

Getting started with OWASP WebGoat 4.0
and SOAPUI.

Hacking web services, an introduction.

Version 1.0 by Philippe Bogaerts

Philippe.Bogaerts@radarhack.com
www.radarhack.com

Reviewed by Erwin Geirnaert

Erwin.geirnaert@zionsecurity.com

www.zionsecurity.com

1. Introduction

SOA, web services, WS-security and lot of other rel ated
protocols and technologies become at fast pace busi ness
critical corner stones of today’s IT infrastructure s and
business applications. Security efforts must undoub tedly
focus more on the applications in use, simply becau se this
is where companies are vulnerable today. Organizati ons can
be impacted the most when applications, (read: the business
processes), are adversely used.

This paper should serve as a starting point for eve ryone
that wants to learn, in a practical way, the basics of web
services and how they can be exploited. This paper has the
only purpose of education and awareness creation, t owards
people wanting the world to become a better and sav er world.

The tools used in this paper are freely available a t
http://www.owasp.org and http://www.soapui.org .

2. A word on WebGoat 4.0

From the OWASP website:
“WebGoat is a deliberately insecure J2EE web applic ation
maintained by OWASP designed to teach web applicati on
security lessons. In each lesson, users must demons trate
their understanding of a security issue by exploiti ng a
real vulnerability in the WebGoat application. For example,
in one of the lessons the user must use SQL injecti on to
steal fake credit card numbers. The application is a
realistic teaching environment, providing users wit h hints
and code to further explain the lesson.“

More info can be found at:
http://www.owasp.org/index.php/Category:OWASP_WebGo at _Project

3. A word on Soapui

From the SOAPUI website:
“Soapui is a desktop application for inspecting, in voking,
developing and functional/load/compliance testing o f web
services over HTTP. It is mainly aimed at
developers/testers providing and/or consuming web s ervices
(java, .net, etc). Functional and Load-Testing can be done
both interactively in soapui and within an automate d
build/integration process using the soapui command- line
tools. Soapui currently requires java 1.5 and is li censed
under the LGPL license.”

More info can be found at:
http://www.soapui.org/

4. Installing WebGoat 4.0

Installing WebGoat 4.0 is a straightforward process . Simply
download the zipped binaries via the WebGoat projec t pages
on http://www.owasp.org . This paper is based on the
Windows_WebGoat -4.0_Release.zip of the tool.

1. Unzip Windows_WebGoat -4.0_Release.zip in a directory of
your choice.

2. Make sure that all other web servers running on por t
80 are stopped. Stop Microsoft IIS services and Apa che
services via the control panel if they were previou sly
installed. Especially pay attention to Skype, it
can/will use port 80 when available on startup and
will inhibit WebGoat from booting correctly.

Note: Use “netstat –an” on the command line to veri fy
that port 80 is not in use.

REMARK: It is possible to change the connector port that
Tomcat uses via editing the file server.xml located in
Windows_WebGoat-4.0_Release\tomcat\conf. Just chang e the
value “80” to whatever you want, e.g. “80803, and s ave the
file when exiting.

3. Click WebGoat.bat in the installation directory and a
command shell window will display the WebGoat start ing
process. If everything goes as planned, it will
display a message like “INFO: Server startup in 4719
ms”.

4. Connect to http://127.0.0.1/WebGoat/attack (mind the capital
letters in the URL) and login with the username guest
and password guest .

5. A nice welcome page is displayed in your browser
inviting you to click start.

5. Installing soapui

Installing soapui is very easy. You need a Java Run time
Environment or Java Developer Kit from http://java.sun.com .
WebGoat is bunled with a JRE so you can use this ja va
virtual machine. Just click the “Webstart” button on the
http://www.soapui.org . Throughout the paper soapui 1.5 is used
to guarantee the best results, although most functi onality
is working fine in the beta versions available on t he
website. Another option to install soapui is to dow nload
the binaries. This latter option is used in this pa per.

1. Download the soapui 1.5 binaries (soapui-1.5-bin.zip)

2. Unzip the archive in a folder of your choice

3. Double click in the soapui-1.5\bin folder, the
“soapui.bat“ icon. Soapui starts and presents you a
nice looking interface.

6. A hair rising explanation of web services

Web services are about applications communicating w ith
other applications, opposed to a user to applicatio n
communication model.

New applications might want to communicate to “reus e
existing services” already offered by applications on the
corporate network, partner network or simply somewh ere
available on the internet.

Imagine you want to develop a simple network monito ring
application that sends an SMS when a certain host o n your
network goes down. The first part could be easily a chieved
by a simple ping command (or something more fancy i f you
have the time ☺), but sending the SMS when something goes
wrong, might be difficult and a much more expensive
undertaking. Wouldn’t it be handy if you could, wit h some
few lines of code, reuse the existing SMS system al ready in
place within the company’s mail-to-SMS service appl ication?

Well, web services make this possible. A web servic es
infrastructure provides you with a simple, document ed and
standardized way of invoking a remote service. One of the
building blocks of web services is XML. XML is a wa y to
represent the data being exchanged between systems in an
unambiguously way, independently of the OS or devel opment
environment in use.

So, the first question is, where do I find the serv ice I
potentially want to reuse? Companies might use an U DDI
repository in which developers (or applications) ca n look
for available services. In our case (and often the case),
the information about the web service is provided o n a
webpage.

Here is a starting link in WebGoat:
http://127.0.0.1/WebGoat/attack?Screen=14&menu=1110

Once you know what service is suitable for your app lication,
it is of course mandatory to know how to invoke the remote
service (what operations are available, what syntax needs
to be used, what parameters need to be passed, what
responses can be expected…). All this is described in the
corresponding WSDL file (Web Services Description L anguage).

Take a look at the WSDL file of one of the web serv ices
available in WebGoat 4.0. It might be possible that you
need to authenticate again, using guest as the username and
password. http://127.0.0.1/WebGoat/services/WSDLScanning?WSDL

This WSDL file contains all the information your
application needs to invoke the remote services. Ty pically,
your application downloads the WSDL file and is abl e to
craft the necessary requests and interpreting the r esponses.
This can be achieved easily with a few lines of PER L code
or soapui!

Where does SOAP come into the picture? Web services are
designed to be totally independent of the underlyin g
network protocols, whether you use TCP, UDP, SMTP, FTP or
HTTP. An independent layer and standardized protoco ls on
top of all these protocols is necessary to exchange our
service related messages between applications. In o ur
example, SOAP is almost overhead. In more complex
environments SOAP is used to address web services m ore
accurately, route messages and much more.

7. Enough theory, let’s start playing

Visit http://127.0.0.1/WebGoat/attack?menu=1110 . The
information provided in the web interface, the Acco unt
Number, is received by an underlying java applicati on when
clicking the submit button. The java application bu ilds the
correct SOAP message (corresponding to the WSDL fil e) and
sends it to the web service that interrogates a dat abase
for the associated credit card numbers. A SOAP resp onse
message received by the java application is interpr eted and
the results are displayed in the browser.

8. Invoking the web services directly

Instead of using the web interface, we can try to a ccess
the web service directly. The web page provides a l ink to
the WSDL file describing a service to retrieve cred it card
numbers. (http://127.0.0.1/WebGoat/services/WsSqlInjection?WS DL)

1. Open soapui, create a new “WSDL project” and name i t

“Good_Web_Service”, and save the project file to di sk
when prompted.

2. Next important step, import all information necessa ry

to send and receive correct soap messages, because, as
explained, this is how you interrogate web services !

3. Click Add WSDL from URL, provide the URL for the WS DL

file and click OK.

(You might be prompted for authentication. Always u se
the “guest” account)

Note: soapui sometimes displays an error exception when
downloading the WSDL file. If you experience any pr oblems, just
open the same link in a browser and save the file a s
“web_service_good.wsdl” and import it into soapui.

4. Soapui now prompts to create all default requests f or

all operations. This simply means that soapui can
build the correct messages to interrogate the web
service, based on the WSDL file just imported.

5. Double click “Request 1” in the interface and soapu i
shows a kind of template of the soap message to be

send (over http in this case) to the web service.

A closer look at the message reveals the structure of
the SOAP message. The service request is encapsulat ed
in a SOAP envelop. The SOAP envelop contains an
optional SOAP header (not present in this case) and a
mandatory SOAP body.

The interesting part to notice is the XML message i n
the SOAP body. This XML message is build according to
the information in the WSDL file and is different f or
most web services available.

To illustrate the full picture, this soap message i s
send across the network within typically http(s),
using the POST method to the service endpoint
http://127.0.0.1/WebGoat/services/WsSqlInjection .

6. To easily use the service, create a test case by
right-clicking “request 1”.

7. Now take a look at the SOAP message in the test cas e
and change the id (Account Number) “?” in “101”. Ot her
valid id values are 102 and 103.

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001 /XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSche ma"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/enve lope/"
xmlns:les="http://lessons.webgoat.owasp.org">
 <soapenv:Body>
 <les:getCreditCard
soapenv:encodingStyle="http://schemas.xmlsoap.org/s oap/encoding/">
 <id xsi:type="xsd:string">101</id>
 </les:getCreditCard>
 </soapenv:Body>
</soapenv:Envelope>

8. Before you click the play button, make sure to tell
soapui it needs to authenticate to use the service.
The authentication mechanism in use is “basic HTTP
authentication”

Note: In most cases, the authentication step is not
necessary. A lot of web services on the internet do
not need authentication.

9. When done, click the play button in the interface.

10. A quick look at the SOAP response reveals the
requested information.

<soapenv:Envelope xmlns:soapenv="http://schemas.xml soap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns: xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <ns1:getCreditCardResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/s oap/encoding/"
xmlns:ns1="http://lessons.webgoat.owasp.org">
 <getCreditCardReturn soapenc:arrayType="xs d:string[2]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/enco ding/">
 <getCreditCardReturn xsi:type="xsd:stri ng">987654321</getCreditCardReturn>
 <getCreditCardReturn xsi:type="xsd:stri ng">223420065411</getCreditCardReturn>
 </getCreditCardReturn>
 </ns1:getCreditCardResponse>
 </soapenv:Body>
</soapenv:Envelope>

Remark: The SOAP messages in these examples have no SOAP header. The
SOAP header is optional.

11. Create new test cases and change the id value i n some
other valid and invalid values. Monitor the SOAP er ror
messages, when the service fails to fulfill the req uest.

9. Time to hack

Revisit the web page to obtain associated credit ca rd
numbers and account numbers. As explained, to fulfi ll the
request, the web services interrogate a database fo r the
information linked to the account number. In plain words,
the account number will eventually be part of a SQL
statement. This is a snippet of code that builds th e SQL
statement:

String query = "SELECT * FROM user_data WHERE useri d = " + accountNumber;

This is really bad! The accountNumber is simply app ended to
the string that will be used as the SQL statement. So in
normal conditions, this would be:

SELECT * FROM user_data WHERE userid = 101;

Now use your imagination. What happens if I could e xecute
SELECT * FROM user_data WHERE userid = 101 or 1=1; ?

Let’s try this!

As you can see, the web application does not expect this
trick. But perhaps, the protection is build within the java
code and not in the web service being used to inter rogate
the database.

Let’s create a SOAP message that interrogates the d atabase
with 1 or 1=1 .
Create a new test case (think about the authenticat ion) and
adjust to your needs.

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001 /XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/enve lope/"
xmlns:les="http://lessons.webgoat.owasp.org">
 <soapenv:Body>
 <les:getCreditCard
soapenv:encodingStyle="http://schemas.xmlsoap.org/s oap/encoding/">
 <id xsi:type="xsd:string">1 or 1=1</id>
 </les:getCreditCard>
 </soapenv:Body>
</soapenv:Envelope>

Well, you’re supposed to be rich at this moment, if it
wasn’t a training application ☺!

10. Conclusion

Web services might be vulnerable to the same type o f
attacks as web applications. It is important to not ice that
every component of the application needs to be secu red and
coded with security mind. Just imagine what would h appen if
this web service would be available and reused by o ther
applications?

I hope to have guided any reader through an excitin g and at
first sight complicated world of web services and X ML
related technology and hope this paper might serve as a
good starting point.

If you have any questions, comments or come across mistakes,
feel free to drop me an email at xxradar@radarhack.com .

